Q42. The points at which the tangents to the curve $y = x^3 - 12x + 18$ are parallel to *x*-axis are: (*b*) (2, 34), (-2, 0) (a) (2, -2), (-2, -34)(c) (0, 34), (-2, 0)(d) (2, 2), (-2, 34) **Sol.** Given that $y = x^3 - 12x + 18$ Differentiating both sides w.r.t. x, we have $\frac{dy}{dx} = 3x^2 - 12$ \Rightarrow Since the tangents are parallel to *x*-axis, then $\frac{dy}{dx} = 0$ $3x^2 - 12 = 0 \implies x = \pm 2$ *.*.. $y_{x=2} = (2)^3 - 12(2) + 18 = 8 - 24 + 18 = 2$ $y_{x=-2} = (-2)^3 - 12(-2) + 18 = -8 + 24 + 18 = 34$ *.*.. Points are (2, 2) and (-2, 34) ... Hence, the correct option is (d). **Q43.** The tangent to the curve $y = e^{2x}$ at the point (0, 1) meets *x*-axis at: (b) $\left(-\frac{1}{2},0\right)$ (c) (2,0) (d) (0,2) (a) (0, 1) **Sol.** Equation of the curve is $y = e^{2x}$ Slope of the tangent $\frac{dy}{dx} = 2e^{2x} \Rightarrow \frac{dy}{dx} = 2 \cdot e^0 = 2$ *.*. Equation of tangent to the curve at (0, 1) is y - 1 = 2(x - 0) $y-1 = 2x \implies y-2x = 1$ \Rightarrow Since the tangent meets *x*-axis where y = 0 $0 - 2x = 1 \implies x = \frac{-1}{2}$ *.*.. So the point is $\left(-\frac{1}{2},0\right)$ Hence, the correct option is (b). **Q44.** The slope of tangent to the curve $x = t^2 + 3t - 8$ and $y = 2t^2 - 2t - 5$ at the point (2, -1) is: (a) $\frac{22}{7}$ (b) $\frac{6}{7}$ (c) $-\frac{6}{7}$ (d) -6Sol. The given curve is $x = t^2 + 3t - 8$ and $y = 2t^2 - 2t - 5$ $\frac{dx}{dt} = 2t + 3$ and $\frac{dy}{dt} = 4t - 2$ $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4t-2}{2t+3}$...

Now (2, -1) lies on the curve $2 = t^2 + 3t - 8 \implies t^2 + 3t - 10 = 0$ ·. \Rightarrow $t^2 + 5t - 2t - 10 = 0$ $\Rightarrow t(t+5) - 2(t+5) = 0$ $\Rightarrow (t+5)(t-2) = 0$:. t = 2, t = -5 and $-1 = 2t^2 - 2t - 5$ $2t^2 - 2t - 4 = 0$ $t^2 - t - 2 = 0 \implies t^2 - 2t + t - 2 = 0$ \Rightarrow $t(t-2) + 1 (t-2) = 0 \implies (t+1) (t-2) = 0$ \Rightarrow t = -1 and t = 2 \Rightarrow So t = 2 is common value Slope $\frac{dy}{dx_{x-2}} = \frac{4 \times 2 - 2}{2 \times 2 + 3} = \frac{6}{7}$... Hence, the correct option is (b). **Q45.** The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 - 2 = 0$ intersect at an angle of: (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{6}$ (a) $\frac{\pi}{2}$ **Sol.** The given curves are $x^3 - 3xy^2 + 2 = 0$...(i) $3x^2y - y^3 - 2 = 0$ and ...(*ii*) Differentiating eq. (i) w.r.t. x_i we get $3x^2 - 3\left(x \cdot 2y\frac{dy}{dx} + y^2 \cdot 1\right) = 0$ $x^2 - 2xy \frac{dy}{dx} - y^2 = 0 \implies 2xy \frac{dy}{dx} = x^2 - y^2$ \Rightarrow $\frac{dy}{dx} = \frac{x^2 - y^2}{2xy}$... $m_1 = \frac{x^2 - y^2}{2xy}$ So slope of the curve Differentiating eq. (ii) w.r.t. x_i , we get $3\left[x^2\frac{dy}{dx} + y \cdot 2x\right] - 3y^2 \cdot \frac{dy}{dx} = 0$ $x^{2} \frac{dy}{dx} + 2xy - y^{2} \frac{dy}{dx} = 0 \implies (x^{2} - y^{2}) \frac{dy}{dx} = -2xy$ $\frac{dy}{dx} = \frac{-2xy}{x^2 - y^2}$...

So the slope of the curve
$$m_2 = \frac{-2xy}{x^2 - y^2}$$

Now $m_1 \times m_2 = \frac{x^2 - y^2}{2xy} \times \frac{-2xy}{x^2 - y^2} = -1$
So the angle between the curves is $\frac{\pi}{2}$.
Hence, the correct option is (c).
Q46. The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing is:
(a) $[-1, \infty)$ (b) $[-2, -1]$
(c) $(-\infty, -2]$ (d) $[-1, 1]$
Sol. The given function is $f(x) = 2x^3 + 9x^2 + 12x - 1$
 $f'(x) = 6x^2 + 18x + 12$
For increasing and decreasing $f'(x) = 0$
 \therefore $6x^2 + 18x + 12 = 0$
 \Rightarrow $x^2 + 3x + 2 = 0$ $\Rightarrow x^2 + 2x + x + 2 = 0$
 \Rightarrow $x(x + 2) + 1(x + 2) = 0 \Rightarrow (x + 2)(x + 1) = 0$
 \Rightarrow $x = -2, x = -1$
The possible intervals are $(-\infty, -2), (-2, -1), (-1, \infty)$
Now $f'(x) = (x + 2)(x + 1)$
 \Rightarrow $f'(x)_{(-x, -2)} = (-)(-) = (+)$ increasing
 \Rightarrow $f'(x)_{(-1, \infty)} = (+)(+) = (-)$ decreasing
 \Rightarrow $f'(x)_{(-1, \infty)} = (+)(+) = (+)$ increasing
Hence, the correct option is (b).
Q47. Let the f: $\mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 2x + \cos x$, then f:
(a) has a minimum at $x = \pi$ (b) has a maximum at $x = 0$
(c) is a decreasing function (d) is an increasing function
Sol. Given that $f(x) = 2x + \cos x$
 $f'(x) = 2 - \sin x$
Since $f'(x) > 0 \forall x$
So $f(x)$ is an increasing function.
Hence, the correct option is (d).
Q48. $y = x(x - 3)^2$ decreases for the values of x given by:
(a) $1 < x < 3$ (b) $x < 0$ (c) $x > 0$ (d) $0 < x < \frac{3}{2}$
Sol. Here $y = x(x - 3)^2$

For increasing and decreasing $\frac{dy}{dt} = 0$ $2x(x-3) + (x-3)^2 = 0 \implies (x-3)(2x+x-3) = 0$:. $(x-3)(3x-3) = 0 \implies 3(x-3)(x-1) = 0$ \Rightarrow x = 1, 3... Possible intervals are $(-\infty, 1)$, (1, 3), $(3, \infty)$ *.*.. $\frac{dy}{dx} = (x-3)(x-1)$ For $(-\infty, 1) = (-) (-) = (+)$ increasing For (1, 3) = (-) (+) = (-) decreasing For $(3, \infty) = (+) (+) = (+)$ increasing So the function decreases in (1, 3) or 1 < x < 3Hence, the correct option is (*a*). **Q49.** The function $f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$ is strictly (a) increasing in $\left(\pi, \frac{3\pi}{2}\right)$ (b) decreasing in $\left(\frac{\pi}{2}, \pi\right)$ (c) decreasing in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (d) decreasing in $\left[0, \frac{\pi}{2}\right]$ Sol. Here, $f(x) = 4\sin^3 x - 6\sin^2 x + 12\sin x + 100$ $f'(x) = 12 \sin^2 x \cdot \cos x - 12 \sin x \cos x + 12 \cos x$ $= 12 \cos x [\sin^2 x - \sin x + 1]$ $= 12 \cos x [\sin^2 x + (1 - \sin x)]$ \therefore 1 – sin $x \ge 0$ and sin² $x \ge 0$ $\therefore \sin^2 x + 1 - \sin x \ge 0$ (when $\cos x > 0$) Hence, f'(x) > 0, when $\cos x > 0$ i.e., $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ So, f(x) is increasing where $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and f'(x) < 0when $\cos x < 0$ i.e. $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ Hence, f(x) is decreasing when $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ As $\left(\frac{\pi}{2}, \pi\right) \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ So f(x) is decreasing in $\left(\frac{\pi}{2}, \pi\right)$ Hence, the correct option is (*b*).